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INTRODUCTION

b

= High speed digital circuits have resulted from the miniaturization of solid-state devices
! and the implementation of those circuits into dense systems (VLSI and VHSD). Switching
- devices presently used have rise times and pulse widths in the range of a few nanoseconds.
t:‘ Moreover, devices with switching delays of less than 10 picoseconds are being developed
- from which delays of less than 50 picoseconds will probably result in large computers.
;:\-:1 Aside from the physical characteristics of the devices, interconnections are another parame-
o _ ter which deterﬁline the speed of these systems. Today, interconnections represent the main
- limiting factor in the reduction of speed because of the inevitable RC delay they introduce.

e

¥

Moreover, with increased density and speed, the problem of cross-coupling has become more

critical since noise resulting from unwanted signals must be limited. Finally, reflections at

-

the terminals due to mismatch along with device nonlinearities, contribute to the complica-

> tions which have posed some severe constraints for switching network design.

[ I

re

’ In this study, the problems associated with the propagation of fast pulses in microstrip

g interconnections will be analyzed. The purpose of this analysis is to investigate each effect

. such as RC delay, reflections, cross-coupling, nonlinearities,and to propose a model for the

combined effect. Such a model is essential since it provides the engineer with the necessary

= elements from which design guidelines can be implemented while giving a better under- "q
“‘\ standing of noise phenomenon. q

:': In order to develop the model, it will be necessary to determine the physical characteris- ..;;
) tics of the interconnections as well as those of the propagation medium. Unfortunately, ....3

analytical expressions predicting those physical characteristics are not always realistic and .3

v do not account for processing variations, nor can they be applied to arbitrary geometries. To
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circumvent this obstacle, several measurement techniques will have to be developed in order

to obtain the important physical parameters.

An overview of the presently available microstrip technology along with the theoreti-
cal foundations is first explained. Some techniques of measurements in the time domain and
in the frequency domain are then discussed for both single and coupled lines. Experimental

results are finally analyzed and extensions to multiple lines are-attempted.
1.1 Characteristics of Microtrip Transmission Lines

Numerous investigators have studied the properties of microstrip transmission lines , pro-
posed models, design equations, and various approaches for the analysis. Figure 1.1 shows a
cross section of a microstrip line which consists of a strip conductor of width W resting on
a substrate of thickness # and dielectric constant €, , and a ground plane which serves as the

return path. The conductor can be either copper, gold, or an alloy of tin and nickel.

Since the fields between the strip and the ground plane are not entirely within the sub-
strate, the propagating mode along the strip is not purely tranverse electromagnectic (TEM)

but quasi-TEM with a phase velocity v, given by

- (1.1

where ¢ is the speed of light in vacuum and €., the effective dielectric constant of the sub-

strate. The wavelength A, in the line is :

<

2

A, = (1.2)

\

where f is the frequency of the propagating signal. Moreover, if the line is assumed to be

lossless its characteristic impedance (or wave impedance) 7, , is expressed by
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CONDUCTOR w

¥ [DIELECTRIC SUBSTRATE
) &

h = SUBSTRATE THICKNESS

t = STRIP CONDUCTOR THICKNESS
w = STRIP CONDUCTOR WIDTH

€= DIELECTRIC CONSTANT

(a) CROSS SECTION OF MICROSTRIP LINE

AT OO IITIIITIIIIIINi

ELECTRIC FIELD LINES
-———— MAGNETIC FIELD LINES

(b) FIELD CONFIGURATION

Figure 1.1 : Microstrip transmission line? (a) cross section showing the geometric parameters ;

fh) field lines. Since all the lines do not pass through the dielectric. u quasi- T\
anaivsis must be used.
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Z, = —_ (1.3)

where L, and C, are the self-inductance and self-capacitance per unit length, respectively.

From Maxwell's equations it can be shown that Z, and v, are related by

Z, = (1.4)

At lower microwave frequencies, the quasi-TEM model can be shown to be fairly accurate.

At higher frequencies a hybrid mode analysis would be required. This analysis is far more

h : rigorous, and we will restrain ourselves to the frequency range where the quasi-TEM model

- is valid.

[y

' 1.2 Close Form Expressions and Design Equation

'-::' Based on the quasi-TEM model, several techniques for characterizing microstrip transmis-

-1 sion lines have been proposed. These techniques include conformal mapping {1}, [2], the

\_ method of Green's functions [3], (4], [S} the moment method [6], and variational techniques

(7}, [8] Close form expressions from Wheeler (2], Schneider [9], and Hammerstad [10] have

g been reported. They contain useful relationships between the effective dielectric constant,

“ the physical dimensions and the electrical parameters of the line. For instance, Hammerstad's

equations give the width to height ratio as a function of the desired characteristic impedance

j" (Figure 1.2). 1
For W /h € =2, J]
5 Pk - a9
' 5
L i
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Figure 1.2 : Charactenistic impedance /, versus width to height ; W ‘A. Solid line : theoret:-
cal expressions from Hammerstud with € =4.5 ; points: experimental measure-
ment using time domain reflectometry. lor the experimental points, the lines
have a dielectric constant 4<€ 5.
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ForW/h 22

e —1
W o 2p -1 —1nB -1+ E"—(in(B — 1) + 039 - 061 061y
h m 2¢,
where
Z, € +1 €, 0.11
A= + 0.23 -
60 2 €, +1( 3 €, g
and
B = 377

2Z, /e,

(1.6)

1.7

(1.8)

These relations assume an infinitely thin conductor strip ; in practice, the thickness must be

considered, which is done by defining an effective width of the strip, W, for use with Equa-

tions (1.5) <1.8) instead of W,

For W /h 2 ——
27’

w t h

W, =—+ —(1+2—

- h h(l t)
1

For W /h €

27

W,
—- =W, +—[1+l (J"W)]

It has heen found that for t/h £ 0.005,2 €€ <1,and 0.1 £W/h

(1.9)

(1.10)

< 0.5, neglecting

[
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the thickness of the strip introduced very little error. Since these values represent most )
[ Ew
practical cases, correction for finite thickness is of ten neglected. =%

1.3 Frequency Dependence and Dispersion

The relations derived above were based on the quasi-TEM model. At higher frequencies
this model is not accurate for microstrip lines because of the propagation of hybrid modes.
As the frequency increases, the phase velocity decreases which reveals an increase of the

effective dielectric constant ; an increase of the characteristic impedance is also observed.

The frequency f, velow which dispersion effects can be ignored is given by [11]

pous)

s

|

[

i -"‘:""..‘j

> |
(Ghz) =034 f—Zo (1.11) -
S, (G \/h(cm e —1 R

and the effective dielectric constant €.( f ), is given by [12]

€ —€,
€. =€ — ———
1+G(-L_y (1.122)
I
where
V4
= =2 .12b)
fo= 3 (1.12
G =0.6 + 0.009Z, (1.12¢)

The frequency dependence of the characteristic impedance Z,, was reported by Owens [13]

_ 377h
W.(f )\/éj(f) (1.13)

Z,(f)

where W, () is the effective width given by

N N . <. .
- . - . -7 . . . - . - .o . .
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wifr=w + XOW
Af)= L (1.19)

'y

W.(0) is obtained from (1.13) when f =0.

1.4 Time and Frequency Domain Characterization

The steady-state, single frequency solutions for the voltage and current on a transmission

line derived from Maxwell’s equations (14] have the form

w3 (221
- +r—

vix)=[ae “+Be “le’” (1.15)
1 —j—‘\ﬂ- *".‘:i Jw
Itx)=—-[ae " -Be "le (1.16)

where A and B are constants which depend on the terminations. This can be rewritten in a

more general form which accounts for the transients in the line :

Vix)=V. tx)+V_tx) (1a7mn
1(:,:)=Z‘ V. (tx)~V_(tx)] (1.18)

]

1.4.1 Time Domain

Experimental determination of microstrip line characteristics i1s classically performed
using Time Domain Reflectometry (TDR) techniques. Reference [15] gives a complete over-
view of the basic principles and their uses for network transient measurement. To visualize

the technique, let us consider the test set up shown in Fig. 1.3a : the system consists of a

-
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29 $(50Q)  LINE(50Q) LINE 2
+ Vg VO
Vg
(a)
. Zi-Zo
v (! 2 257
__________ [ | ¥
Vg Z
VQZOV Z *Zo (FL*I)
Zq'Zo 9 A 0
=-—=f- f’
Vg Vo
(b)
Figure 1.3 : 'Time Domain Reflectometrv. Applications to transmission line

characterization{a) experimental setup , (b) voltage reading. The time axis can
also be used as position axis which allows to determine and locate discontinuities
along the test line. Rise time of applied step =50 ps.
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ramp generator V, of internal resistance Z, (usually 50 Q). A coaxial cable of characteris-
tic impedance Z, and length [ 1s connected to the line to be tested {characteristic impedance
Z, and length 1). When the switch is closed at ¢ =t,, a forward moving wave C, is gen-

erated at point a. For voltage and current continuity, it must satis{y

-— c+
= Z, (1.19)

from which we obtain

1%
C,= -—2‘-'- (1.20)

Upon reaching the test line at point b, a backward wave C _ as well as a forward wave T,

appear. They must satisfy

C.+C_=T7T, (1.212)
C+_C- _ T+
Z. =Z (1.21b)

which yields

7y =2,

C-=(z +2Z,

XC.=T,C, (1.22a)

2Z.,C.

T,= —22* 22
7 7 (1.22b)

where I', is the reflection coefficient from the test line at &. When 7', reaches the end of the
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test line at point ¢, a reflected wave 7 _ is produced such that

=(z——XT,=T,;T, (1.23)

where I'; is the reflection coefficient at the load. Upon reaching &, T _ will generate two
new waves : C _ on the coaxial line and 7" ,on the test line. These successive reflections will
keep taking place indefinitely. The expression for the voitage at any point along the line
will have the form of a geometric series of I',I'; which converges to the final value (for

very large t)

Z;

V = Z:Z_Vg (1.24)
‘g

Figure 1.3b shows a graph of the voltage at point a, V,(¢) as a function of time. Since the
phase velocity in both coaxial and test lines are assumed constant, there exist a linear rela-
tionship between time and position. The first step in the voltage is the magnitude of the for-
ward wave traveling the coaxial cable C,. Its duration is 2/ /v, where v_ is the velocity in
the coaxial line. The second step is 7 ,. If the magnitudes are normalized to C,, the

difference between C, and T , is the reflection coefficient ', due to the test line

Z, -2,

L=77%z

(1.25)

When T, is read from the Time Domain Reflectometer. 1t allows direct calculation of Z,, :

1+T1,

Z, =2Z,(
Z,=2Z, =T,

) == (1.26)
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Whereas the phase velocity v, can be obtained from the time delay 7, :

o=
v, =21 (127)
TO
Capacitance and inductance per unit length can be extracted using (1.1)-(1.3). -
S
C: = ! (1.28a) ";‘
Z,v, L (
B
and 3
z, -
L, = (1.28b)
vo
1.4.2 Frequency Domain - Scattering Parameter Model
The information obtained from the TDR, although complete, does not provide us with e
any insight of the frequency dependence of the transmission line parameters. Because of ins- ]
tability concerns at large frequencies (RF and microwave) and because of their manoeuvra- o
bility at those frequencies, Scattering parameters (S parameters) can be used for a frequency ";t_
domain analysis. A good introduction to S parameters is given in References [16] and [17].
We brieflv summarize the essentials of these parameters and their meanings.
Figure 1.4 shows a two-port network inserted on a line of characteristic impedance Z,,. =
Both ends of the line can be regarded as connected to generators of internal impedance Z..
I
:_: E,| and E,, are the incident portions of the voltages in ports 1 and 2, respectively. Simi-
v
E'. larly, E, , and E, , are the reflected portions of the same voltages. We can then define four
::_' traveling waves on the line : :
.
L | —
£
'..\ |
v |
’ |
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-
- Figure 1.4 : Scattering matrix. Definition in terms of the power waves.
-
P

' Zo-2q
a h— I » a T-= —Z:*—Zg—
' Zo | Zg
. MICROSTRIP LINE | b
. v4 | Zq
- 409 Vo |
Vg RF SOURCE TWO PORT

wl
_Q=-eBiVo)Tr

; Sy ® Sz * -T2e 2wl
g Vo
- s wl
2 g s5. Tl Vo
12721 | T2e72 W]
< o
N
h'S
Figure 1.5 : Experimental setup for determining the characteristic of a microstrip line as a
function of frequency. Equations are shown that relate the velocity and the
- impedance to the measured reflection and transmission parameters.
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(1.29a2) s
s
E 1 E, 2 ‘
bi=—=  by=—F7= (1.29b) L
vz, vZ,
—
2
The square of the magnitude of these new variables has the dimension of power ; la 1% is -
the incident power to port 1 ; Ib,12 is the reflected power from port 2 of the network. The I
s
four S parameters characterizing the two-port relate the traveling waves as follows :
~
by=Sya,+S 4, (1.30a) )
-
b2=S2|a,+33202 (130b)
From these relations, the four S parameters can be defined alternatively as
Za
S“=— SZI=— (ll(k)
a; ay=0 a; a=0
b | bz AN
Sl.?:_ 522=_ (1.30d) S
as a;=0 a; a,;=0
If both ends of the line are connected to generators with internal impedance Z,, then a | and <
a are simply the incident waves from the generators. Since the incident power from either -
generator can be deliberately set to zero, Equations (1.30c) and (1.30d) provide the main o
scheme for determining the S parameters of a network. It is of interest to note that S|, and -
S 22 are reflection coefficients and relate traveling waves of one given port whereas S |, and
K
S ;) are the transmission coefficients of the two-port. o )
.\
Y
oy S s BT AR ISP N N (N S S
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1.4.3 Scattering Matrix for Transmission Line

When the network to be characterized is a transmission line, it can be modeled as a two-
port (Fig. 1.5). Consider an unknown transmission line of characteristic impedance Z, and
length [ embedded between two coaxial lines of impedance Z, terminated with their
characteristic impedance. On the left is an RF source of frequency f =w/2w. Setting the ori-

gin at the first intersection , the voltage and current equations for the system are

WY +/ﬂ

-
Vix)=Ae *+Be ™ (1.312)
1 ~fe i
I(x)==[Ae *-Be %] (1.31v)
Z&
e e (1.32a2)
Vix)=Ce °+De ° .
@x WX
1 e M
Iz(x)=z—[Ce °=-De "] (1.32b)

o

v, and v, are the propagation velocities in the coaxial and test lines, respectively. A, B, C,
and D are constants which depend on the terminations. Applying the boundary conditions

at x =0 and x =[, we obtain

V) _ u-ryg

SZI = A 1_[‘232 (1333)
=8 _(0-p3r
Su== =YY (1.33b)

where




z, -2,

Z, +2,

r= (1.34b)

T is the reflection coefficient at the ends of the unknown line. Adding (1.33) to (1.34), we

get

Szx‘Su=lr_++I‘.% (1.35)

Subtracting (1.34) from (1.33) gives

r-é
Sy—=Snu= 1—T8 (1.36)
Combining (1.35) and (1.36) yields
I_=Szzl—sle 1\/]"'(822!- lzl)-Z(Slzl +S|2| (1.37a)
254
B=sl2,-sg, + 1+ -S2)-2S3 +53) (1.37b)

PARY

Since §,; and S ,; can be measured with a network analyzer, Equation (1.37) allows a direct
determination of I from which Z, can be obtained. The propagation velocity and the
effective dielectric constant can also be obtained. Figure 1.6 shows experimental plots of
characteristic impedance versus frequency for various geometries of lines. The measure-

ments were performed on an HP 8505 automated network analyzer. At higher frequencies,
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the measurements vecome more difficult and external effects such as junction discontinuities,

capacitance, and inductance become more significant.
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CHAPTER 2

COUPLED TRANSMISSION LINE CHARACTERISTICS

The theory of coupled transmission lines arose with the early applications to multicon-
ductor systems. Its development continued with the advent of directional electromagnetic
couplers [18] Several methods using the quasi-TEM approximation have been proposed to
obtain the parameters of coupled microstrip lines. A comparison of these methods is given in
[19). Krage and Haddad [20}, [21] have determined the inductive and capacitive coupling
coefficients as well as the directivity for various geometries of coupled lines. Bryant and
Weiss [22] have established the relationship between the electrical and physical parameters
of coupled line pairs using the Green's function approach. Their MSTRIP computer program
has been validated after comparison with various authors. Garg and Bahl [23] derived semi-
empirical equations for the even and odd mode parameters. Hammerstad and Jensen [24] suc-
ceeded in implementing a model with errors less than those caused by physical tolerance.
Recently, Kirshing and Jensen [25] reported frequency dependent expressions with unpre-
cedented accuracy. Most of the solutions provided by these numerical techniques suffer from
the lack of experimental data which would validate their application to microstrip coupler
design. The main difficulty arises with the presence of different modes of propagation and
the parameters associated with these modes which impose more complex measurement tech-
nique requirements. The goal of this chapter consists of implementing the electrical model
for coupled lines and determining experimentally the coupling parameters. Correlations
hetween phyvsical dimensions and electrical parameters can then be established empirically.
Altough this method limits the flexibility of the microstrip designer. 1t provides more accu-

racy for parameter determination while giving a better insight of the coupling phenomena.
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2.1 General Expressions and Propagation Modes

The differential equations relating the propagating voltage and current along two cou-

pled transmission lines are

Wi, B, o

ax o ot
LI Lzlgl‘ + Lzzalz

9x ot

9x o

) v, av.

9:.¢ +C 32

o u= o 22

V| and V, are the voltages along line 1 and line 2, respectively, and /, and /, are the
corresponding currents. The L,, and C,, are the matrix inductance and capacitance
coefficients. The mutual terms are equivalent, C,,=C,; and L ;=L ,,. Moreover for sym-

metric structures we also have L =L ;, and C,,=C ;. Those matrix elements can be related

AL

i .

L ¥

(2.1a)
(2.1v)

.‘}
(2.2a) j

)
[~ =%

(2.2v)

dda L e

to the electrical parameters. Figure 2.1b is the distributed model for two coupled identical

lines for which C, and L, are the self-inductance and self-capacitance, respectively, and L.,

and C,,, the mutual inductance and capacitance. Kirchhotf’s law in differential form gives

Y LORNE IR T
9x o ot
LU TR 1
ax 3 &

S S UL
IR VSISV I

cet e e,

..] A

(2.32) N

. .
atataly altad

(2.3b)
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Figure 2.1 : Coupled microstrip lines : (a) geometrv, (b) distributed circuit equivalent. It is
assumed that the two lines are identical. 1, and C, are the self-inductance and
F capacitance of each line. L, and C, are the mutual parameters of the pair.

These parameters can be measured and related to the matrix elements using
Equations (2.5)-(2.8).
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- X & ot

(2.4v)

,
diind

Comparison with Equations (2.1)42.2) with (2.3)(2.4) gives the equivalences.

C,=C, +C, (2.5)
cl2=—cm (2.6)
¢ L,=L, 2.7)

L 125 LI" (2-8)

For the symmetrical case one solution can be found by adding (2.1a) to (2.1b) and (2.2a) to

o 9
(2.20). 3

1
5 __-_=(L”+L12)—at_ (2.92) a

v,
-~ —=(C,, +C,)— (2.9b)
. ot

ox
B “ where

o v.=Lwv,+vy (2.102)
o -

I=Lu,+1 (2.10b)
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are the common mode voltage and current. Equations (2.9a) and (2.9b) have the same form
. as the well-known single line Telegraph Equations ; therefore the solutions in the fre-

quency domain assuming a time harmonic dependence are
a V.ix)=A. e “ +B. e (2.11a)

: A, I B, e

= )= Be o le B 7w (2.11b)
8 =7 Z,
-
- where A, and B, are constant coefficients associated with the forward and backward trav-
eling waves, respectively. Z, and v, are the even mode impedance and propagation velocity,
;

respectively :

‘ z.= A/t o fLitl, (2.12)
L CutCy; V C

w 1 1
o v, = -
i VL +L XC +C ) (L +L,)C, (2.13)

. and w=27f is the angular frequency of the propagating signal. Subtracting (2.1b) from

(2.1a2) gives

] v I
- _ 9V =(L,-L lz)6 d (2.14a)
ox
l v
- a <! = (C“—C IZ)L" (2-14b)
ox
where
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Vd = (v y = Vz) (2-153)

1
2

I, = -;—(v, -V, (2.15b)

are the differential mode voltage and current. As before chis system can be solved to give

-jg +jv£
Vyx)=4A,e “+B,e (2.16a)
A, Tl B, tre
Lix)==2%e " _ZLeo ™ (2.16b)
y Zd Zd

Ay and B, are as before constant coefficients associated with the forward and backward

waves, respectively, and Z, and v, are the odd mode impedance and propagation velocity

defined as
Z, = Lol _ LiLn Qa7
Ciu—C. C,+2C,
1 1
v, (2.18)

T L, —L,XC,—C.d L.=L.XC +2C.)

Using Equations (2.10) and (2.15) we obtain the general solution for the line currents and

voltages :

Vix)=V.(x)+ V,(x) (2.19a)

I(x)=1,(x)+1,(x) (2.19b)

.\.~ . . KRR ‘ R N - - . .. e . S .
- 3 . . 1, - . - - Yot " .. . b . M TR Y . - v ~o -t
AR OTEETO . PR T YA WY A"nhi:x‘\.' ' PO NP U U ") PN WPy 2 PO SO W ¥

vy




V)=V (x)=-V,(x) (2.202)

ILx)=1,(x)=1,(x) (2.20b)

which gives

¥
. ax wx . W LW l:
—i— +i— i i g
v v v v . N
vix)=A. e “+B.e “+a,e " +B,e " (2.212) "]
sorad
T A o) "‘:1
-f— + - + /= S
Il(x) = _A_,_ e o B“ e ve + —AL e vd - Bd e ‘e (2-21b) .:
Ze Ze Zd d R
s
e
s o e g (2.22a) -
V{x)=A. e “+B.e ‘—A,e ‘-B,e “‘ . e
o0
-7
A, Vo B, ‘Yo A, ThS B, *he ]
- I{x)==—¢ "2t "_Lle WMLyLe ' (2.22v) e
° c Zc zd Zd "”-4
Equations (2.21) and (2.22) give the general form for the line currenis and voltages for a j:::‘_.'j
time harmonic excitation. The constants A,, B,, A;, and B, are determined by the boun- :—;
|
dary conditions at the four ends of the lines. Determination of these constants depends on R
4
. the nature of the problem. For the case where the excitation is periodic, a Fourier series form _::‘.}
: i 9

must be assumed as the general solution for which the constants become the Fourier series
coefficients. Finally for nonperiodic excitation, a Fourier transform approach must be used
for the general solution. This will be illustrated in the next chapter. In all cases, the time-

dependent solutions have the form :

vid=a.u -2+ b0+ 2+ a,60 -2+ b,¢ + ) (2.23a)
vc V‘, v.t vd
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-1 Xy Xy, 1 _ Xy X
I(x)= 5 [a.c - £ b.i + )]+ > (a, vd) b,u + = N (223b)

< ¢

Vi) =a.t - )+ b + By-a, - Z)-b,¢ + X) (2.24a)
Ve Ve \Z} A}

- Xy Zy_ 1 _ x5 X
14x)= 510G ) b"(t+v,)] 718 =) b"(t+vd)] (2.24b)

Q. and @, are the forward functions for the even and odd modes, respectively, bc and b 4

are the backward functions for the same modes.

2.2 Application and Coupling Parameter Measurement

The major advantage of Equations (2.23) and (2.24) is that the solutions are put in a
form where the refiected waves are separated in time from the forward waves. This can be
applied with TDR measurements to obtain the coupling parameters of a microstrip pair since
only the forward voltage waves need to be considered. In Figure 2.2a, two identical coupled
lines of length [ are connected at x = 0. A coaxial cable of characteristic impedance Z, con-
nects the TDR to the pair. A forward traveling voltage step of magnitude V, upon reach-

ing the junction generates a backward step, V,,. From Kirchhoff's law we must have

Vi, = Q000+ Qe 0)=V; +V, (2.25a)

_ g (0 (¢.0) (t0) _H GO|_V: -V,
Ird/ - a‘» Z(, + ad Zd + a(. Z(‘ ad Zd - Zg (2-25b)
V!J/ = ap (t rO) h aJ (t .O) (2-26)

This implies that
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Figure 2.2 : Experimental determination of the even and odd mode characteristics of a pair :
of coupled transmission lines : (a) even mode measurement since no odd mode 1s —}
present both velocity and impedance for this mode can be measured : (b) paralle} <4
connection since it 1s difficult to excite the odd mode, this configuration is used to j;j
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a,(t0=0 (227
and
V!dl - Zr
T, ) (2.28)

Therefore, the reflection coefficient measured at x =0, p.=V,/V ; can be related to the even

mode impedance of the pair:

14p,
z. = A4

)z, (2.29)

e

Since no odd mode exists, the measured time delay 7., can be related to the even mode velo-

city :

oL
Ve = 2 T, (2-30)

Another configuration is that of Figure 2.2b in which line 2 is connected to ground at x =0

and line 1 is connected to the coaxial line. The equations are

| ]
Vi = Q.00+ A,00=V, +V, (2.312)
_ (£.0) o|_V. -V,
1, = a‘, Z. + ad Z, = Zg (2.31b)
a.(0)=a,:0) - (2.322)
e, .’--. A :. -.t"_'-- ‘_-. s N - .. ‘:-v'_.-_ e -
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‘:-. V!J/ — ZrZJ
1, "z +2,

(2.32b)

The associated reflection coefficient p,= V,/V,; can be measured directly and using the

above relations we obtain

z.z 1+p,
Y = 7, (—P)
Z2.+Z, 1-p,

(2.33)

Since both even and odd modes are propagating , a direct relation between the time delay

T and either velocity cannot be established. Nevertheless, Equations (2.29), (2.30), and (2.33)
provide the necessary relationship for extracting Z., Z,, v. and, if the single line parame-
- ters are known, Equations (2.12), (2.13), (2.17), and (2.18) can be used to determine the

mutual capacitance and inductance as wel] as the odd mode propagation velocity of the pair

(Figure 2.3). From these equations we see that

Z, <2, <Z. (2.34)

which suggests that for weak coupling

B R 4 & LV /
PP |- P

Z, =2, =Z (2.35)
.
i : . . o
Table 1 shows experimental values of self and coupling parameters obtained for several 4
F R
: microstrip pairs. These values were extracted by using the methods outlined above. As ]
expected mutual parameters depend stronglyv on the spacing between the lines ; 1t is also ]
~ R
observed that the mutual inductance is stronger even at wider spacings between the edges of ‘
-3
;.,: the coupled lines.
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.' TABLE 1 : EXPERIMENTAL DATA OBTAINED FOR VARIOUS GEOMETRIES OF
TRANSMISSION LINES WITH GLASS-EPOXY DIELECTRIC. GEOMETRICAL
DIMENSIONS ARE AS DEFINED IN FIGURE 2.1, THEIR UNIT IS IN MILS. .
IMPEDANCES ARE IN OHMS AND VELOCITIES ARE IN m /ns. INDUC- y
o TANCES AND CAPACITANCES ARE IN nH /m AND pF /m, RESPECTIVELY. »
Desian Width = 10 mils Dielectric height :21 mils :;
o sk
_. S Zo Vo Zd vd Ze Ve Ls Cs Lm Cm o
___________________________________________________________________________ v 4
3 ?3 187 45 162 127 156 496 53 212.7 40 T
- ” ?3 187 51 167 122 1S9 47 " 19« 3 30 .
X 10 73 117 54 17 122 159 49¢ o3 17t 3 ol . :
o 12 7z 187 53 182 120 t61 476 oo LTTOT L -
) 14 2?3 187 60 167 113 1hG 174 -2 131 b2t ,__J
16 ?3 187 62 162 108 169 A9 0 1152 <1 ‘__]
I 18 93 187 64 157 104 172 476 a3 37 2 21 -:-1
S 20 ?3 .187 4S5 156 102 174 4?26 °8 77.6 20
. Design Width = 15 mi1ls Dielectric heiaht :21 mils
S 5 Zo Ve Zd vd Ze Ve Ls Cs (Y Cm =
.- 3 78 182 37 .192 116 143 429 7 24.8 314 R
5 78 182 a4 .198 113 150 429 70 20S.4 22 )
:‘,- 7 78 182 47 200 114 151 429 71 172.8 18 "
10 78 132 52 206 10?7 154 429 70 174.4 11 o
12 73 182 58 212 104 156 429 70 156 5 6
N 14 78 182 59 .207 102 . 158 429 7 144.9 I3 .
. 16 73 .182 60 .203 100 159 429 70 133.4 6 &
18 78 . 182 61 .198 79 . 164 429 70 122.4 [
20 78 .182 62 . 190 94 164 429 70 100.8 7
Daesign Width = 20 mils Dielectric heiaght :21 mils
! 5 Zo Vo Zd vd Za Ve Ls Cs Lm Ca
3 72 182 37 161 99 154 37% 76 1623 45
3 72 182 22 176 ?8 154 7S 76 L56.7 30
) ? 72 182 45 174 4 157 3199 76 133.¢ 2
-7 10 72 132 52 .200 2 157 39S 7?46 135.5 0
- 12 72 .182 sa .205 90 .158 395 76 129.4 7
b 14 72 .182 57 .206 88 . 160 395 76 119.0 4
16 72 .182 Sa .202 84 L1614 599 76 108.8 S
~ 18 2 .132 S? 204 35 162 375 76 104 . ¢ 3
= 20 72 . 182 60 . 174 82 L1653 395 76 86.3 S CF.
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Since different charge distributions arise with the two modes, some authors have found it
convenient to define an even mode capacitance and C,., and an odd mode capaciance C,, and
base the complete analysis in terms of these parameters [8}, [9]. Figure 2.4 shows a decompo-
sition of the total capacitance of a microstrip pair in terms of even and odd mode capaci-
tances. The existing expressions for C,, and C,, are semi-empirical, however, using our

model, 1t can be shown thatC,, =C, andC_ =C, +2C,,.

The major advantage of the techniques of measurement introduced above is that thev are
Very accurate, since no approximation was made in deriving the model and the relations
between the coupling and propagation parameters. As a consequence, reliable empirical data

can be established from these measurements and used as design guidelines for microstrip

couplers.
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Figure 2.4 : Decomposition of the capacitances into odd and even mode components. C,
represents the capacitance associated with the TEM propagation mode ; C. is the
tringing capacitance. C,, and C,, are the mutual capacitances in air and 1n the

- dielectric, respectively. The normalized charge distribution associated with each N
- mode 1s shown on the right with @, being the charge at the center of each strip. _j
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) CHAPTER 3

TRANSIENTS IN COUPLED MICROSTRIP LINES

In the preceding chapter, the response of coupled lines was analyzed for harmonic (single
frequency) excitation. We now wish to extend the analysis to account for the transients
involved in the case of an arbitrary excitation. This is particularly important for digital
applications where the signal applied to microstrip lines is a pulse or an impulse. Since the
rise and fall times of these excitations are becoming shorter, the coupling between adjacent
lines becomes more significant and has more serious effects. This is the so-called "crosstalk”
noise. Various authors have attempted to describe this coupling phenomenon and relate it to
the mutual parameters of the pair. Cotte {26] developed a first theory on the propagation of
pulses in a coupled pair of conductors. Catt [27] analyzed the same effects for various
transmission line configurations. Jarvis [28] studied the waveform distortion caused by this
coupling as well as the effects of the terminations. Several numerical techniques have also
been applied for simulation of these coupling effects. In general, the cross-coupling between
two lines is a function of the terminations which make up the boundary conditions for the
general solution previously derived. This chapter will examine the solution to this problem

in the time domain.

3.1 Passive Terminations

Many practical situations in digital applications involve pairs of micrestrip lines for
which the the behavior of the terminations does not vary with the magnitude of the sig-

nals. In this case a real linear impedance can be used to model the terminations at the source

-1
ii

and at the load. Figure 3.1 shows a microstrip pair having resistances Z,, and Z,, at the

o4

sending end and Z;, and Z, , at the far end. The voltage sources have magnitudes V , and

Lo Al ok on
ST,
.

Shia’s

V., » The time harmonic solution for the voltages and currents was found to be

.

ety
B
f




(a)

I | |
t |

Figure 3.1 : (a) Representation of a microstrip pair loaded with passive terminations. The
lines are assumed to be identical. V. | and V , are arbitrary voltage sources.
(h) Representation of a source waveform in the case of pulse excitation.

"o

G e e e




MGt
’.;::s.;
®

v v -y
- .
. ’ PR
. . o
. st

v va vy
NN

]

PR A e £ Aot B ™ ek A A A A A A

36

A, The B, YN AL ThL B, N
I(x)=Zte " -Zte “4+lle e

w) LW wx

A, T, B, v A, TNy By Ny

I{x)==%e ‘“-=—e *‘—-==e ‘+="=e
- [ Ze Zd Zd

If we apply the boundary conditions at x =0 and at x =/ , namely

V., =VL0)+ Z ,I,0)
V2=V AL0) + Z, .1 £0)
0=V ,U)=2,1,)
0=VL)=2Z,,1A1)

and by setting

9

TR TR R T TR T LT U T R LT e T e T T T TR T T (T

’

—

(3.12) =
‘(1

(3.1b)

(3.22) N

(3.20) -

3
=
(3.3a)
(3.3b) -
(3.3¢) -
(3.3d)
W
(3.4a) “ :
(3.4b) -
(3.4¢)
"J‘
-
__-_:
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> o (3.4d)
0, = a, =€

we arrive at

(1+v) a-v) -(1+y) (y -1
0.1 -¢q) a.(1+q) 0,1 —2) o,(1+2)
0,(1—d) a,(1+4d) 0,(p —1) —a,(1 + p)

(1+m) (=m) (Q+s) (1-s5)| |4 51
= (3.5)

which is the generalized matrix equation for the coefficients A,, B,, A,, and B,.

In many practical cases, the terminations on both lines are identical, or Z, =2, ,=Z; and

Z;=Z; ~Z;. This reduces Equation (3.5) to a much simpler form. Then Cramer’s Deter-

minant Rule can be applied to give

¢ 2(Ze +Zx) l—rxcrLcerz >
~V,, +V, )Z.07T7
B(. = 51 s-)zr'ec rLz 1 - (3.6b)
2AZ,+2,) 1-1,.T,0;
(V,, = V,.)Z, 1
A - hd .
y A0z, +2,) 1-I,r,,6; (3.7a)
V=V, )Z,03T}
B, = =V, s 2Z407T 2y 1 - (3.70)
Zd +Z, 1 _rserJe‘; B
where ]
o
Zg "Z‘ ZL ‘Z, ]
b=z 7z, T«"z+2Z (3.8a) "]
N
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T, g :Z r, = %:—%:— (3.8b)
6 = e’f: (3.8¢)
o, e (3.84)

Equations (3.6) and (3.7) give the coefficients for the time harmonic periodic excitation
where V; and V,, are assumed to have the same frequency. From these equations it is seen
that even or odd mode can be matched. Particularly, when Z,=Z, and Z; = Z,, we have

A4 V,,
A = S_%’_-) (3.92)

_(Vs 1 + Vr E)Oozrlzd

- 9b
B, 3 (3.9v)

(Vs [ Vs Z)Zd

A = 2z, +Z.) (3.9¢)

B, =0 (3.9d)

In the case where the excitation is not periodic, contributions from all frequencies must be
°

included in the general solution. The coefficients , thus become continuous functions of fre-

quency. In the time domain, solutions for the voltages and currents are obtained by

integrating over all frequencies. We therefore have

+00 ¥ +00 ¥
- — +owr + —

viex = [ awe “do + [ BWwe “dw .. (3.10a)

-0 -0

e RS SR R e
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.
.
+00 1 +00 N
. +/uﬂr—v—‘ + /Wit +V—‘
I +fAd(w)e ‘do + f B,(w)e ‘dw
| ot ‘ o
i
L
/ reo +juwlr 2, oo +rut + 2
- _1 T v 1 TR
1x)= Z—LA,(w)e do - 5[ Bwe dw (3.100)
r +00 ‘i X, +00 it + o)
1 A 1 Ly
' + ZLAd(w)e dw _Zf B,(w)e dw
v -
r. +:° +jwit ——:—) re +iwr + VL-
. Vg(t,x)=j Alwe ‘do + fB‘.(w)e ‘dw (3.11a)
L.. e +jult —VL» e +sut +VL;
—fAd(w)e ‘dw — f B,(w)e ‘dw
- +00 .o ¥ +00 .t 4 2
, _ 1 A 1 ey
i I{tx)= ZLA"((")@ dw — 2 f B.(w)e dw (3.11b)
+00 . o X, +00 . . X
- 1 Jult = = 1 Jor 4 =
; _ZLAd(w)e ‘dw +Z£Bd(w)€ ‘do
! This can be rewritten in a simpler form as
Vi=8,+8,+5,+5, (3.12a)
~
' ; 2S5 _S: S, S (3.125)
'\ Z Tz Tz, T 7, 3.12
~ V,=8,+8,-§,-5, (3.13a)
S, S, S S,
[ ;5 — — — = — + —
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:-;j.'.':: where S, § S, and §', are the forward and reflected voltage waves for the even and odd
‘ = modes.
- +c0 ,
L. +jukr = =
. S, = f Alwe ‘do (314
-: X +00 ,
.-'.-. + it + v_.
s S,= f B, (w)e ‘dw (3.15)
oo :
+jult — -v—'
g s.=f awe “ dw (3.16)
+00 x
+jwt + =
s.=[ Bwe ‘4w (3.17)
It is easy to recognize that the coefficients A,(w), B,(w), A,{(w), and B,(w) are the Fourier
transforms of S, §; 5 ; and § , respectively. By applying the same boundary conditions as
for the time harmonic case and keeping the assumption, Z; =Z, ;=Z, and Z; |=Z; ,=Z,, wWe
) can solve for these coefficients in the frequency domain
o W, (o) + W, {))Z,
A lw) = —= Y (3.18a)
I 2(2‘. + Z,) 1 - r,e l",_,e,
.‘
Ll —W, (@) + W, 0)}Z,T 02
B,(w) = ! £ Lee 1 5 (3.18b)
T 2(Z¢ +Z,) 1 -rserheg
,_‘ - (W, (w) = W, {w))Z,
S Allw) = - £ 1 5 (3.192)
AZ, + Z,) 1-1,,7,,0
:._
]
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W, () - W, {))2,T,,02
B, ()= Ve ECUZAVPLE S (3.19b)
Az, +2,) 1-T,T,67
where W, (w) and W, {w) are the Fourier transforms of V(¢ ) and V{t), respectively. '.;-.'.::
RS |
E':,.:J
-]
+c0

_ 1 - -
W, (@)= 2 [v.we ™ a (3.20)
+00 = q
1 —swt k

W, dw) = 2 fvire ™ a (321)
Since for passive terminati;ms we always have T
l rse rLe eez' < 1 (3.22) . ¢
o
and & '.4
IT,a T, 07151 (3.23) '.-.j:::
Sy
Equations (3.18) and (3.19) can be written in the form of infinite geometric series of the -1
]
reflection coefficients. :f-: :
RN

wl
(W, +W.)Z, = . -2
Afw) = W ¥ W D2 & py 7 (3.242)

2. +2,) 3

., WA+
W, +W.)Z, = =Y

B.(w) = S ririte ‘ (3.24b) —_

A2, +2,) 2




"-::M (‘Vs 1~ wx Z)Zd < —Zde-

= LT4 e (3.25a)
Ade) = =7 ‘.230 Tial'la
o Wik +1
.j (‘Vxl - W, Z)Zd & & I3 -sz_v;—“ ( 2 b)
S Byw) = — Y rurit'e 3.25

Az, +2,) o

Using Equations (3.14) through (3.17) and making use of the time delay theorem for Fourier

transforms, we can then invert for the associated modal voltage waves in the time domain.

Sl = 3 O S, ¢ - ":f"’ )+ V4t — it%"i)] AT, (3.26)
S{tx)= Ei_zi—z) SV, & + 1__2&1:;1)1)”, Lt + i%’:“—)‘-)] TATEH  (327)
S(tx)= 2—(2—4272—) S, e - 2228y _y ¢ - TMyrory, (328)
St x)= m WV, ¢ + ﬁ—ﬁ’:—“—)‘) V.4 + ‘—2(’:*—“’)” i (329)

and using relations (3.12) and (3.13), the voltages and currents on both lines can be obtained.

These equations show that the resulting signals on the lines can be expressed as an
infinite sum of delayed and attcnuate& replicas of the the original applied voitages. They
apply for arbitrary waveforms and allow to determine the voltage and current magnitudes
at any time and any position along the lines. Convergence of the series depends on the
reflection coefficient at the source and receiving ends. These relations also indicate that the
difference in modal velocities of propagation can lead to abrupt changes in the signal

waveforms. This is best illustrated in Fig. 3.2 where only line 1 is excited. For a reading at

x =0 on line 2, the reflected even and odd mode signal (S, and §,) arrive at slightly




W T VT W W AT EN e T Ve T AN

D 43

different times and since their contributions are of opposite signs (cf. Eq.(3.13a)), they pro-
- duce an impulse in the waveform of line 2. Such a disturbance, however, does nct occur in

line 1 since S, and S’, are added according to (3.12a).

Experimental readings were performed using a PGS02 Tektronix pulse generator and a
r- microstrip pair (Figs. 3.2 and 3.3). The readings were found to verify the theory which can

also be extended to describe complex terminations.

3.2 Capacitive Terminations

p-_'
t
- Most digital applications for transmission lines include devices such as diodes, transistors,
\ and logic gates. Ideally the input impedance of such devices is very high and the input
=
capacitance is minimized to insure small switching delays. In practice as rise and fall times
; become shorter, any small capacitance must be taken into consideration, this is more impor-
tant when several identical devices are connected to the far end of a single microstrip line.
. Capacitance is related to the carriers in the devices ; for instance, in the case of a bipolar
¥ transistor, a diffusion capacitance associated with the charge store in the base and a transi- l:-:-]
. S
A tion capacitance related to the base-emitter space charge layer make up the total input capa- {
—d
= o
! citance. This suggests that the impedance seen is strongly nonlinear; however, an average ]
1
capacitance can always be defined and used to implement a good linear model. ]
(- :
g In the case where the load impedance consists of a resistor R, in parallel with a capacitor j
- C. (Fig. 3.4a), the reflection coefficients I';, and I';, for the even and odd modes in the fre- G
quency domain become functions of frequency. R -]
- )
:".y [N
- P, + jort _
- J@ ]
rl.t =t _J - £ (3.30) e
1+ jor, B e
o
S
S
: <2y
:'_:LJ
]
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.Vi{o) (volts) Vi (0) (volts)
oL ~
3f
LONG LINE ok SHORT LINE
F
0 Ht—t———t—t——+—+—+—++
20 30 40 S0 €0 - 10 20 30 40 50
t {ns) t (ns)

V(o) (volts)

078

050

Figure 3.2 : Cross-coupling for passive terminations with far end opened. Theoretical (piots)

and actual (photographs) waveforms for a long (left) and short (right) pair of
coupled microstrip lines. Photographs : top waveforms are V ,(0) (driving
line) with vertical : 2 V /div, bottom waveforms are V £0) (idle line) with
vertical : 0.5V /div. Each horizontal division is S ns. The spikes on the
waveforms of V {0) are due to the delay differences between odd and even
mode reflections. For a short pair of lines, these spikes can no longer be
detected by the scope because of their short duration.

e ey - ~—rrrw - —
PPy — ey TR Y YT RN YL T T L YDV WL W W LY _'vxt‘l

L

I

O §

-3

Lo




2

“_ Applied puise:
2 ,=2ns
- t,=2ns
— | t,.=50ns
2
'§ = Vv, =4V
~ 1 11 N DR A ! 1 R
- — T 1T T I T ; —
° i 10 20 30 40 so| S 70 80
> y ro— O35m —em
B t (ns)
L
SHORT Z,=%9Q v, =0.154m/ns
]
1O Z,=61Q v, =0.191m/ns
— W=15Smis h=14mils
g 05 F s=lomils 2.=50Q
g =
-~ 0 | TS SRS DU TN (RN SO N AN N M S
r2) Tt !  pama m— 1 | | G
e 10 20 30 40 50 60 70 80
= |
-05 t (ng)

Figure 3.3 : Cross-coupling for passive terminations with far end shorted. Theoretical (plot)
and actual (photograph) waveforms. Photographs : top waveform is V (0)
(driving line) with vertical ; | V /div, bottom waveform is V £0) (idle or
sense line) with vertical : 0.5 V /div. Each horizontal division is S ns.




Figure 3.4 : (a) coupled microstrip lines with complex loads and (b) applied pulse.
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Py + jwT,
r,, = ——— .
Ld 1+ jor, (3.31)
where we have defined
R -2, RZ.C (3.32)
= T = ————— .
Pe =R ¥z T R+z 3
_ R _Zd = RZdC
Py = =7 Z, e = Tz Z (3.33)

Since I';, and I';, are functions of frequency, the time domain solutions for the modal
voltages are convolutions of the delayed source voltages and the inverse transforms of

I‘L,(w) or I',_d ((l)) .

Z, x + 2kl X + 2kl \yr s %
S(tx)= m '2[", (t — T) +V, Lt ~- . =——=)Ir&
-1
F i) (3.342)
_ Z. 20k +1) x =2k +D oy %
Sz(l,t)——m E[V l( +._\-1-:_—)+sz(: +——c——)]I‘,‘,
F [rul((,,)] (3.34b)
, Z4 x + 2kl _ X + 2kl g x
Stx)= AT AY Z[V, (t - == )=V, At = ))) g
Firs i (3.352)
e Zs =2k 410, _ x =2k +1Dl, x
S':(t"t) = 2(zd +Z ) Z[VS l(t + . ) ‘/::([ + VJ ]rtd
F_'[I‘;_J‘(w)] (3.350)

where * denotes a convolution. Let us consider

2, _< et
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P,
5 —-p + joT
r==ptjor (3.36)
1+ jowr 55
a
E’ The associated inverse Fourier transform is
-
- -‘}.
1 -r
- 14+ =t
F [rw)= [st)»r -—T-B u(t)le’ (3.37) -

where u(z) 1s the unit step function and 8(¢) is the unit impulse function. Finding the

inverse transform of I'“(w) implies applying the convolution theorem k times ; it can be

(Y
shown that e
;
-1 “tlep 4 jwr [ k=1 PO Ak .
F [rk(«»l:F e JeT| sy 4 (—1¥ D, 1/ [LERT leT  (338)
1+ jor ;=0 T
}
where D;, are constant coefficients satisfying the recursion relation "
Doy = k(=1)"! j=0 (3.39a)
- D,_1i- . -
Diu==Dpumr¥ == ji>0 (3.39b)
4
so that Equations (3.34)+(3.35) become 73
Z. S x_+ 2kl x + 2kl oo ¥ -
tx)= ————m) |V -—)+V - ——)Ir &
Syt x) Xz, +Z:)/§o[ NG v’ )+ Vv, Lt " )} gl
=4
P 1+p, 7+t -t .,
8e)+(=1¥ 3D, t/ e (3.40a)
=0 I'd “I
Z, 3 x — Ak +1) x =2k +Dl 0 % :
S At = —— V. (t + =—="_""2Y4 V 4 T SaFE e :
At x) = =55 Eo[ 2 ) VL L~ Ir

RET
o

Ja.n
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k=1 1+
8(t)+(—1)‘“'2DM+,t/l Pe e’ (3.40Db)

7=0

Z, x + 2kl x + 2kl v ¥
S— — ] | % ——)Ir{
S'|(f,X) 2(Zd +Z) 2[ xl(t vy ) 2( vy )] sd
£ —1 1 +pd Jj+1 :_'
8e)+(=1* 3D, t' |—= ¢ (3.412)
j=0 Ta
Z4 — 2k +1) x =20k +1l ;s %
——d V[V, (¢ + 2T ETUy vy + TSR
Sz(tvx) Z(Zd +Z ) ‘20[ :l(t v, ) SZ(I v, ]rSd
14p, | %
8(e)+ (=1¥*' 3D, 4t/ e “  (3.41b)
=0 Ta

In the case where the applied excitation is a pulse {cf. Fig. 3.4b), V, (¢ ) and V, {¢ ) have the

form
0 ; t <0
t -—
((t 't‘)) : ¢St <t
2= 4
v.ie)= Vv, ; t,St Sty (3.42)
(t =ty
——— tySt <t
P(tJ—t) 3TN
0 ; t2t,
Moreover, the convolution integral
(r=ry N
(¢ —t,=\) -
I = f —ty e T AdA (3.43)
Lt f

can be solved by using the j™ order derivative Theorem for Laplace transforms.
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- Therefore, if we define
~
! k=1 14 AR _}'
- C=v,e*se)+(-1¥ ¥D,, 1/ [1I£ e (3.45)
A j=0 T
we have
-
k—l ) 1 + "+l
C=V,6)+(=1¥"t3D,, t/ —-P~T X (3.46)
j=0 )
(!—!lJ
(t—t,) v i
— | jrriti— Ymimtt e 7
P(tz_tl) J mz-_:o
k=1 11+ s+t
~ (=1}'YD,, ¢/ |—£] x
Ik T
=0
(r=ry!
(j+irr/+2— Em!r”'“(t—tl)/"”'“e T
(tZ-tl) m =0
fore¢, <t <, =
. . (=t Lol , oy
: C=v,()+(=1¥'YD,, t/ —ﬂr V| jtrti = Smirnt (-t ) me T :
i /=0 m =0
i -
o for¢,<t <t
[
-
L &1 1+ AL
' 4 C=v,@®)+(=1¥"'Lp,, 1+ |-TL| «
1 1=0 T
P.
7'-
[ ‘
g -
e
e -
1.
L: I e e SRR SR e N el T
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| "pC—z% jrrti— Smirmei e T -
3= m =0 ==

” k=1 AL .-,‘
- —(-1¥'Sp,, /|1 XL : J
b . 4 T .-
Ct Jj=0 .
| :
(1-ry) =

v, | oy 2

‘ - Nri+2— SomiT — -
- - P (J+1)‘ j+2 2 V pm+1] (t t3)/—m+] e 1
4 (t3-t4) m =0 :i
e

; fort;;St <t4
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S where we have made use of

fe¥*sere™ = £(0) (3.47)

Using these relations in (3.40) and (3.41), we can obtain the expressions for the modal

voltages. These equations can be easily implemented on a computer program to simulate the %

’. waveforms produced by a pulse. Such example is shown in Figs. 3.5 and 3.6. As expected the ;“‘j
pulse width, the length of the lines, and the RC time constant are the most important ]

parameters that determine the shape of the waveforms. As for the case of passive loads, fast B

pulses can result at the sending end of a quiet line, (waveshape of V {0) ). These fluctua- :‘i

v

tions cannot be observed accurately using presently available scopes since their duration is

much shorter than the response of thgse instruments.

'w

. Taevs T . et Lo, - )
e e W T A, N .



P
: >
L -
=
( =
-
o~
Applied pulse H )
,=2ns L
5 = l/ =2ns -
4 - t.=12ns ’
3l v o
L —]
.

V, (o) (volts)
4
.

-l -
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Figure 3.5 : Cross-coupling fo‘r capacitive loading. Theoretical (plot) and actual (photograph) N
waveforms of V,(0) (driving line). Photograph : voltage reading 1s ‘
attenuated by 10. R is infinite (open). o
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Applied pulse:

t,=2ns {
T
110 t.=12ns S
088+ V=4V
Q.66
0441
2 022t
. /
3
} ! ! | ! |
— T ] ! [ 1 T 1
S 5 10 15, 20 25 30 40 a5
t (ns) 7
-044 |- -— | ———am -j
] A .|
-066}F 2,=89Q v, =0.154m /ns ) 1
088k Z,=61Q v,=0.191m/ns v 2 R J'C R c i
W=13mils h=14 mis + .-:
-0.10 L VSI_

s=10 mils 2 =30Q

B0 R

{=0.35m C =30pF

Figure 3.6 : Cross-coupling for capacitive loading. Theoretical (plot) and actual (photograph)
waveform of V £0) (idle line). Photograph : voltage reading 1s divided by 10,
R 1s infinite (open).
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CHAPTER 4

o '-f-n—

ANALYSIS OF MULTIPLE LINE STRUCTURES

- i The previous chapters dealt with with two microstrip line structures for which methods

of measurements and time domain behavior were investigated. Structures consisting of

_: more than two microstrip lines are, however, of greater occurrence in practical situations. In
‘ particular, the behavior of three-line systems in the frequency domain has been explored by
several authors. Collier and El Deeb [29] have determined the scattering parameters for a
\ six-port refectometer; Tripathi [30] derived expressions for the immitance parameters of
symmetrical three-line microstrip circuits. Pavlidis and Hartnagel [31] derived the funda-
_,; mental modes of propagations for these structures. Paul [32] constructed the matrix chain
: parameters for multiconductor transmission lines in the frequency domain. Pulse propaga-
tion however, requires a different and more complex analysis in the time domain. For-
tunately, by using the insight gained in solving the two-line problems, expressions for mul-
j_ tiple line structures in the time domain can be written by inspection provided that the
different modes of propagation are identified. The goal of this chapter is to illustrate such an
approach and generalize the techniques for n-line systems.
4.1 Three-Line Structures and Modes of Propagation
.::'_%E We first assume that the three microstrip lines shown in Fig. 4.1 are identical and that
the two edge spacings are equivalent ; then the differential equations relating line voltages =)
and currents can be written directly. l
L _9)’__.=L“611 AL v 1,20 (4.12)
X o o
4
o
7.
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Figure 4.1 : Three-line coupler.
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e v, I 7, !
et L RN A Lk +1,30 (4.1b)
H ax ot o ot
e v 1 I, Y
"-'_ - - a 3 =L|3a ! +lea ~ 'f'LHQ'_3 (4.1C)
L . ox o or ot
and

Y4 \'4 v, 14
) 1=C“6 ,+Cua '+C|3§—3 (4.22)
ax o o o
I V, \%
o =cxza l +Cua - +C|2_a 2 (4.2b)
ax ot &
’4 \4 V., \%
-'a'—s'-'cl:’a L +C126 = +C|,a—i (4.2C)
9x o or &
'.A. - where the L,, and the C,; are related to the physical parameters by
h -
h L 11 = L’ (4.3)
Pt : .
E Lp=L, (4.4) 1
. Ly=L, (4.5) 1
and
o n= Cs + Cm + cn (4-6)
7
C,=-C, (4.7)
Cu=C, (4.8) !
The subscript m denotes mutual parameters between adjcent lines and the subscript n, .
mutua] parameters between nonadjacen® lines. If we define
i
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e
, V,=V,-V, (4.92)
. 1,=1,-1, (4.9b) N
we can determine a first mode of the svstem by subtracting (4.1¢) from (4.1a) and (4.2¢) :.'.%
’ from (4.2a). This vields 1
w v, I, ]
- —a———=(L,,—L.3)-g— (4.10a) =
ox & —
-. +
> ) -1
" I, ,
a = (C T C (4.10b) . "
= The velocity of propagation associated with this mode 1s "1{
]
Vo= = 1 (4.11) g
¢ L ~LXC =,y L,—L,XC,+C,+2C,) : .
Its characteristic impedance is 1
. C
Z, = A /él_';g'i = \/C i"c‘ I:zc (4.12) %
lg i 13 s m n E'—-}
A second mode can be obtained by defining \'

- V=V, +E&V,+V, (4.132)
: Te=1,+El,+1, (4.13b) J
where £ 1s a constant to be determined. When this linear combination is made using (4.1) "'11
B
and (4.2), we get N
. 2
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)
‘-:-.: %4 I
::‘t"- - =(L, +€éL,,+ Lu)g—l (4.14a)
ox ot
Ly, 0!
+( +L ——)—
§ ll g g 6[
- 7
‘ +(L13+£Ll’+§Lu)a 3
- 14
and
7 \%4
-8 =(C,, +£&C,;+C, v, (4.14b)
ax of
. | o Crav. ol s
G e Sl
.,-;.T g §
4
+(C,; +£C), +c.,)a 2
25 We then introduce the approximations
“w Ly+éLy+Ly=L, +£L,, (4.15)
i
:T_:'-j Cu+éC+Cy3=Cy,+¢Cy, (4.16)
which reduce Equation (4.14) to ' -]
e
= 14 I Ly, al, {
N e VN S ARG TSV ERN PPN L] (4.17)
T ax o ¢ 7 o &
4 \% C 1%
&'ﬂ -QJ:(C“"’gClz)L'.'(C“ 2';2)§—+(C“ +§C|1)a 2 (4.17b)
. ax 3 7 o 3
If we choose £=+v2, we then have
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Y
X —-"’-—5--(1,,,+\/'L1,)a £ (4.18)
- 9x o :
. ¥i % .
'_- - _@__g = (C i1 + \fiC lg)a—g‘ . (4.19) :-_
ox o -
gj
. This pair of equations defines a second mode with propagation velocity K ‘j]
= 1 - 1 ]
o ve= = (4.20) ”
v VL, + V2L XC, + V2 VUL, + V2L, XC, +C, + 1=Y2)C,) -
- =
- and an associated wave impedance o

A

_ ‘ \/7.4— V2L, \/ (L, +v2L,) (421)
(c,, + v2C,» c, +C, +(1=v2)x,)

Finally, a third mode is obtained in a similar manner by defining

SRR U P

- —
. V,=V,+nV,+V, (4.22a) I;%
-]
0 Io=1,+nl,+1; (4.22b) 3
-]
. o
n Making the same approximations as per Equations (4.15) and (4.16) and setting n=—v2, we -
get »
"A- * :"_:
v ! -

a 2 = (L 1t = \/E)h (4.233) R

= ox o >
. { ::
LA (Cy~ (4.23b) 5
-

The propagation velocity is ke

N
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1 1
v, = =
" N, -V xc, - v,y N, - V2L, xc, +c, +(1+v2),)

(4.24)

and the characteristic impedance is

Z,= A\ / ____L“"EL'? = \/ L — V2L, (4.25)
" C,, - V2C,, C, +C, +1+V2)C,

The line variables can then be expressed in terms of the three modal variables as

v
V,=%V°+—-[;—V'l (4.26)
V.=V
V,=—$£§___ 1 (4.27)
P
Ve+V
V,= -;- Vot —i—2 (4.28)
and
I+
1,=%1,+—iz—1" (4.29)
Ic—1
1 =24 0 (4.30)
PN
I, +1
13___%_104, ’72 7 (4.31)

It must be emphasized that these results apply if Equations (4.15) and (4.16) are valid. In
general, such approximations are very well justified since in most cases
C, <<C,+(1=V2)C, and L, <<L, +V2L,. Figure 4.2 shows the different excitations

associated with the three modes of the system in the case where the mutual coupling
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between nonadjacent lines is negligible. With the relations, derived, the general solution
for the voltages and currents in the frequency domain can be established particularly for
time harmonic excitation. By examining the two-line solutions, we can anticipate the gen-
eral form for the three-line solutions, provided that the same assumptions regarding the ter-
minations hold ; namely, Z, =2, ,=2,s=2,, and Z; =2, ,=Z; y=Z,;. With this, we can

write the modal voltages by inspection

x + 2k

Vie= A, SV, ¢ - 222y _y ¢ - I Myirars, (4.32a)
k=0 Vo Va
Veu= +8, SV, 0 + 2o 2EHL_y 2 2 AkSVy e (5o
k=0 Vo Va
V,e=Ag DIV, _ X + 2K,
k=0 Ve
+ + _
+ VAV At - -"—%"’-) V- -’-‘-—f’i’-)l APy (4.33a)
Vye=Be LIV, (t + x = 2k +10
£ =0 Ve
+ \/iV’ 2(: + :t__—iv(}fﬂ.)i) + V,J(t + _x_-_Zé_k_ﬂl)] rfgrle (4.33b)
£ ¢
V= A, v, (¢ - 222K,
k=0 Ya
+ 2kl + 2k '
B e R A G LAY S (4.342)
Voo =B, IV, + x__l(iﬂl)
£ =0 Va
x = 2k +1) x =~ 2k+1U :
- V2V, Lt + -——v—n——-——) +V {1t + —_;’-n——)] LT (4.34p)

where

L




— —— T T T R T AT U T TR TR TR VTN TN
i et A e M ol SN S R " i . PLAGNCE M B T TITRTRTREOT

63

o= 3255 Mo= 3255 (439)
Fie= %% Fre= g—i;;%‘ (4.36)
Fin= -;—:—:—;— T1p= —;—:—:—if (4.37)

The modal voltages are as defined by Equations (4.9), (4.13), and (4.22) where the subscript
f denctes a forward moving wave and &, a backward moving wave. Using (4.26)-(4.31),

the line variables can be obtained. If we apply the boundary conditions at x =0 and at x =/,

we get

A,= —B,= ZZ—:? (4.38)
Ag= —B;= —Z?ZfT (4.39)
A,= =B, = Z% (4.40)

4.2 N-Line Structures and Generalization

From the analysis performed, we can anticipate that n-line systems have solutions
analogous to three-line structures. More precisely, if the terminations are identical, an
expression can be written for the n-line structure from the modal characteristics. Since a
matrix representation is more convenient, the problem involves the determination of the
eigenvalues and eigenvectors which can be obtained using some approximations. The Tele-

graph Equations then become
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- ﬂfy—z- = LCﬁi (4.41)
0x ot

where L and C are nxn matrices and V a n x1 matrix for the line voltages. If the n

modes of the system can be found, we can define an eigenvector matrix E such that

V,.=EYV (4.42)

V. is the column matrix for the n modal voltages. The solution in terms of E and the

matrix associated with the voltage sources at x =0, V _, is

Vm=A, SE T,T,. V.4, (4.432)
k=0

Vo ==An SETLT.NV,0tu,) (4.43b)
k=0

where V fm and me are the modal voltage matrices for the forward and backward waves,
respectively. A,,, , I sm» and r .m are diagonal n Xn matrices associated with the source and
load impedances and the corresponding mode ; u fm and u,, are the arguments associated
with the mode m for forward and back ward variables, respectively

x + 2kl x =2k +1)

Upy =t — 2 Upy =t + 2T
fm Vo bm v, (4.44)

where v, is the propagation velocity for mode m. From these relations, the line voltages

can be found by applying

V=E" [V im + Vi (4.45)

We then observe that the problem of finding the signal magnitudes at any time or any

position of an n-line structure becomes that of finding the eigenvalues and the eigenvector

RSTUE ' e

I P
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associated with the system. For a large number of lines, this problem becomes nontrivial
‘ however, by using computer routines or by setting some approximations such as those in

Equations (4.15)4.16), one can arrive at satisfactory results. For instance, it can be

assumed that mutual parameters associated with any two nonadjacent lines are negligible.

This generates L and C matrices with only principal and secondary diagonal elements and

facilitates the analytical or computer task.

The solution to n -line pulse driven structures applies to many digital network problems.

- When n logic gates are switching n other gates via transmission lines, noise and reflections

induced on a quiet line can be determined at any point. This would provide margins for the
a applied signals (magnitude, pulse width, rise and fall times), and the microstrip line
—

geometries (spacing, width, and dielectric constant).
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CHAPTER §

CONCLUSION

This study explored some of the problems associated with two-line structures and
attempted a generalization to multiple line systems. These analyses represent the first steps
for the investigation of more complex situations involving nonlinearities, capacitive termi-
nations, and discontinuities along the lines. N-line systems with arbitrary terminations can

therefore be treated using a numerical approach to provide reliable design guidelines for

digital networks.
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